
Abstract— A low-loss fully embedded bandpass filter (BPF) 

is proposed using low-temperature co-fired ceramic (LTCC) 

technology with enhanced stopband characteristics for the 

broadband multimedia wireless system (BMWS) applications. 

The measured insertion loss was as small as 1.7 dB at a center 

frequency of 41.8 GHz, and the return loss was 10.2 dB 

including the loss associated with two stripline-to-CPW 

transitions. This six-layer BPF showed 3-dB bandwidth of 

8.4 % at a center frequency of 41.8 GHz and suppressed the 

local oscillator (LO) signal to 20 dB at a local oscillator 

frequency of 38.8GHz. 

Index Terms –BPF, BMWS, Coupled, Embedded, LTCC 

I. INTRODUCTION

The increasing demands for real time and high-speed 

wireless data transmissions have accelerated realization of 

broadband wireless systems like wireless local area 

networks (WLANs) [1] and wireless IEEE1394 [2]. One of 

the most important issues for millimeter-wave systems 

implementation is the miniaturization of the systems as well 

as an even greater functionality and lower manufacturing 

cost. The component, which covers significant space and is 

required to be integrated three dimensionally (3-D) with 

active circuitry, is the filter, especially, the band-pass filter 

(BPF), which cannot be integrated within the active circuit. 

Recently, there have been several reports on 

millimeter-wave filters. However, they are developed as 

off-chip discrete components, which need to be packaged on 

a separate printed circuit board [3]-[6] or be placed on top of 

the substrate [7][8], and so, consume a large footprint in the 

RF systems. One of the most promising candidates offering 

the low loss substrate for mm-wave multi-layer circuits as 

well as the dielectric for filter is the low-temperature 

co-fired ceramics (LTCC) technology [9]. With LTCC, the 

three-dimensional integration technology, filters can be 

fully embedded within the multi-layer circuit, and then 

above them, other circuits such as amplifiers and mixers can 

be mounted space-efficiently. It has been reported recently 

that the embedded BPFs have been built just for Ku-Band 

transmitter module [10], for C-band RF front-end module 

[9], and for Bluetooth RF transceiver module [11].  

In this paper, we propose a low-loss fully embedded 

stripline BPF for 40GHz BMWS applications using 3-D 

multilayered LTCC technology. Within the authors’ 

knowledge this is the first report on the fully embedded 

millimeter-wave BPF suitable for system-in-package (SIP) 

applications. 

II. BAND-PASS FILTER  DESIGN

The stripline structure is especially well suited for the 

implementation of the millimeter-wave passive components 

because upper and lower ground planes make the even- and 

odd-mode phase velocities equal and also it has less 

radiation loss [12]. The low-loss parallel coupled stripline 

BPF was designed to realize third-order Tchebyscheff 

prototype response having a 3-dB bandwidth of 8.4 % at the 

center frequency of 41.8 GHz with 0.01 dB ripple. Fig. 1 

shows the schematic diagram of a symmetric stripline 

parallel coupled BPF.  

Fig.1. Schematic layout of symmetric stripline parallel coupled 

BPF (L: the conductor length, W: the conductor width, D: the gap 

of fringing capacitance) 
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The even- and odd-mode impedance values for each 

segment were obtained by using the admittance inverter 

corresponding to the single section [13], and the physical 

dimensions of coupled stripline were obtained by using the 

nomodiagrams [13]. The width, gap, and length for each 

section are summarized in Table 1. 

TABLE 1 PHYSICAL DIMENSIONS OF THE SYMMETRIC PARALLEL 

COUPLED BPF

 L ( ) W ( ) S ( ) D ( )

1 1250 130 115 99 

2 585 100 310 99 

3 568 145   

(a) Initial BPF (V1: 2.32mm, V2: 1.15mm) 

(b) Measured results 

Fig.2 The layout view of Initial BPF(a) and the measured results(b) 

In order to make electric potential equal between upper 

and lower ground planes of the stripline structure, ground 

vias are placed surrounding the filter. Fig. 2 shows the 

layout view of the initial BPF (a) and the measured insertion 

loss results (b). Fig. 2 (b) shows the measured insertion loss 

and return loss of the initial filter superimposed with the 

electromagnetic (EM) simulation results for the frequency 

range from 30 to 50 GHz. The spurious responses at 36 GHz 

in the measured results and at 35.6 GHz in the EM simulated 

results are due to the rectangular waveguide mode generated 

by the V1 distance between the ground vias which placed at 

the both side of the stripline. Another response at 47.6 GHz 

in the measured results and at 47.7 GHz in the EM simulated 

results is caused by the V2 distance of vertically located 

CPW ground vias [14]. These spurious responses affect 

heavily the performance of the filters such as the flatness 

and out-of-stop band. 

(a) Improved BPF 

(b) X-ray photograph of the BPF 

Fig. 3 The 3-D schematic view of the improved BPF (a) and X-ray 

photograph of the fabricated stripline BPF (b) 
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To eliminate the rectangular waveguide mode resonances, 

the distribution of the ground vias has been modified. Fig. 3 

shows the 3-D schematic view of the improved BPF 

suppressing the rectangular waveguide modes (a) and the 

X-ray photograph of the fabricated BPF (b). The overall size 

is 6.1 mm  5.3 mm  0.6 mm including the ground vias 

and CPW pads. Among the six stacked layers, stripline filter 

was placed on the third layer, and the CPW pads on the top 

layer allow on-wafer characterization using GSG probes. 

Both top and bottom ground planes were connected to each 

other through ground vias to equalize the electric potential. 

A measured dielectric constant of each sheet is 7.4, and the 

value of the loss tangent is 0.002 at 40 GHz. The postfire 

thickness of each layer is 100 .

III. MEASUREMENT RESULTS

Fig. 4 The measured insertion (            ) and return loss (           ) of 

the improved BPF 

TABLE 2 SUMMARY OF THE MEASURED RESULT COMPARED TO THE 

SIMULATED

Parameters Simulated Data Measured Data

Center Frequency 
(GHz) 

42 41.8 

3 dB Bandwidth (%) 9 8.4 

Insertion Loss (dB) 0.7 1.7 

Return Loss (dB) 13.4 10.2 

LO rejection (dB)
at 38.8 GHz 

18.9 20 

Fig. 4 shows the measured insertion loss and return loss 

of the filter superimposed with the electromagnetic (EM) 

simulation results for the frequency range from 37 to 46 

GHz. The insertion loss of the filter including the transition 

losses is as small as 1.7 dB at the center frequency of 41.8 

GHz, and the 3-dB bandwidth ratio is controlled to 8.4 %. 

The LO rejection at the local oscillator frequency of 38.8 

GHz is as much as 20 dB. Table 2 outlines the measured 

performance compared to the simulated performance. The 

measured insertion loss at the center frequency is 1 dB 

larger than that of the simulated result. A center frequency 

shift of 0.2 GHz to the down side was observed. The main 

cause of this frequency shift is the tolerance of the LTCC 

fabricating process, which includes the dimension variation 

of 1.1 % caused by screen printing process. 

IV. CONCLUSION

We have presented a low-loss fully embedded LTCC 

band pass filter with enhanced stopband characteristics for 

BMWS applications. This proposed filter allows the 3-D 

integration of the millimeter-wave systems that can result in 

the size reduction of the systems with low-loss and high 

stopband rejection. The measured insertion loss is as small 

as 1.7 dB, and the return loss is 10.2 dB. The 3-dB 

bandwidth is 8.4 % and center frequency of 41.8 GHz and 

LO rejection at 38.8 GHz is about 20 dB. 
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